Dynamic Reduction-Based Virtual Models for Digital Twins—A Comparative Study

Author:

Maulik SoumyaORCID,Riordan Daniel,Walsh Joseph

Abstract

Digital models are the foundation of digital twins, which form the basis of autonomous off-road vehicles. Developing virtual models of off-road vehicles using dynamic reduction techniques is one of several approaches. The article commences with a comprehensive overview of the most widely used dynamic reduction methods and then introduces performance metrics for assessing their efficacies in the context of digital twins. The paper additionally includes a detailed mathematical derivation of the state-space representation for reduced-order finite element models. The state-space representation of the reduced finite element models facilitates their export to problem-solving environments for dynamic analysis. The state-space models are eventually solved utilizing the built-in libraries of numerical solvers in textual and graphical programming platforms. In addition, the article identifies the set of solvers that best suit the simulation of virtual models for off-road vehicles. This article also includes an evaluation of the simulation results for digital models with modes ranging from 0 to 30 Hz. In addition, the article demonstrates the lower bound of the frequency range necessary and sufficient to be retained in off-road vehicle virtual models. Finally, the paper presents the simulation outcomes for digital models of commercial off-road vehicles with custom-built virtual modules of powertrain, electrical, and control systems in a problem-solving environment.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3