Quadratic Clustering-Based Simplex Volume Maximization for Hyperspectral Endmember Extraction

Author:

Zhang XiangyueORCID,Wang YuemingORCID,Xue Tianru

Abstract

The existence of intra-class spectral variability caused by differential scene components and illumination conditions limits the improvement of endmember extraction accuracy, as most endmember extraction algorithms directly find pixels in the hyperspectral image as endmembers. This paper develops a quadratic clustering-based simplex volume maximization (CSVM) approach to effectively alleviate spectral variability and extract endmembers. CSVM first adopts spatial clustering based on simple linear iterative clustering to obtain a set of homogeneous partitions and uses spectral purity analysis to choose pure pixels. The average of the chosen pixels in each partition is taken as a representative endmember, which reduces the effect of local-scope spectral variability. Then an improved spectral clustering based on k-means is implemented to merge homologous representative endmembers to further reduce the effect of large-scope spectral variability, and final endmember collection is determined by the simplex with maximum volume. Experimental results show that CSVM reduces the average spectral angle distance on Samson, Jasper Ridge and Cuprite datasets to below 0.02, 0.06 and 0.09, respectively, provides the root mean square errors of abundance maps on Samson and Jasper Ridge datasets below 0.25 and 0.10, and exhibits good noise robustness. By contrast, CSVM provides better results than other state-of-the-art algorithms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3