Deep Learning-Based Cross-Layer Power Allocation for Downlink Cell-Free Massive Multiple-Input–Multiple-Output Video Communication Systems

Author:

Lin Wen-Yen1,Chang Tin-Hao2,Tseng Shu-Ming3ORCID

Affiliation:

1. Department of Information Management, National Taichung University of Science and Technology, Taichung 404, Taiwan

2. Fun Learn Tech Enterprise, Taipei 100, Taiwan

3. Department of Electronic Engineering, National Taipei University of Technology, Taipei 106, Taiwan

Abstract

We propose a deep learning-based cross-layer power allocation method for asymmetric cell-free massive MIMO video communication systems. The proposed cross-layer approach considers physical layer channel state information (CSI) and the application layer rate distortion (RD) function, and it aims to enhance video quality in terms of peak signal-to-noise ratio (PSNR). Our study develops a decentralized deep neural network (DNN) model to capture intricate system patterns, enabling accurate and efficient power allocation decisions. The proposed cross-layer approach includes unsupervised and hybrid (supervised/unsupervised) learning models. The numerical results show that the hybrid method achieves convergence with just 50% of the iterations required by the unsupervised learning model and that it achieves a 1 dB gain in PSNR over the baseline physical layer scheme.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3