Microsurgery Robots: Applications, Design, and Development

Author:

Wang Tiexin12,Li Haoyu1,Pu Tanhong1,Yang Liangjing123ORCID

Affiliation:

1. ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China

2. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China

3. Department of Mechanical Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA

Abstract

Microsurgical techniques have been widely utilized in various surgical specialties, such as ophthalmology, neurosurgery, and otolaryngology, which require intricate and precise surgical tool manipulation on a small scale. In microsurgery, operations on delicate vessels or tissues require high standards in surgeons’ skills. This exceptionally high requirement in skills leads to a steep learning curve and lengthy training before the surgeons can perform microsurgical procedures with quality outcomes. The microsurgery robot (MSR), which can improve surgeons’ operation skills through various functions, has received extensive research attention in the past three decades. There have been many review papers summarizing the research on MSR for specific surgical specialties. However, an in-depth review of the relevant technologies used in MSR systems is limited in the literature. This review details the technical challenges in microsurgery, and systematically summarizes the key technologies in MSR with a developmental perspective from the basic structural mechanism design, to the perception and human–machine interaction methods, and further to the ability in achieving a certain level of autonomy. By presenting and comparing the methods and technologies in this cutting-edge research, this paper aims to provide readers with a comprehensive understanding of the current state of MSR research and identify potential directions for future development in MSR.

Funder

International Campus of Zhejiang University

Yanjia Technology LTD, Shanghai, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3