Deep Learning Tone-Mapping and Demosaicing for Automotive Vision Systems

Author:

Stojkovic Ana1ORCID,Aelterman Jan1,Van Hamme David1ORCID,Shopovska Ivana1ORCID,Philips Wilfried1

Affiliation:

1. IMEC, IPI (Image Processing and Interpretation), Ghent University, 9000 Ghent, Belgium

Abstract

High dynamic range (HDR) imaging technology is increasingly being used in automated driving systems (ADS) for improving the safety of traffic participants in scenes with strong differences in illumination. Therefore, a combination of HDR video, that is video with details in all illumination regimes, and (HDR) object perception techniques that can deal with this variety in illumination is highly desirable. Although progress has been made in both HDR imaging solutions and object detection algorithms in the recent years, they have progressed independently of each other. This has led to a situation in which object detection algorithms are typically designed and constantly improved to operate on 8 bit per channel content. This makes these algorithms not ideally suited for use in HDR data processing, which natively encodes to a higher bit-depth (12 bits/16 bits per channel). In this paper, we present and evaluate two novel convolutional neural network (CNN) architectures that intelligently convert high bit depth HDR images into 8-bit images. We attempt to optimize reconstruction quality by focusing on ADS object detection quality. The first research novelty is to jointly perform tone-mapping with demosaicing by additionally successfully suppressing noise and demosaicing artifacts. The first CNN performs tone-mapping with noise suppression on a full-color HDR input, while the second performs joint demosaicing and tone-mapping with noise suppression on a raw HDR input. The focus is to increase the detectability of traffic-related objects in the reconstructed 8-bit content, while ensuring that the realism of the standard dynamic range (SDR) content in diverse conditions is preserved. The second research novelty is that for the first time, to the best of our knowledge, a thorough comparative analysis against the state-of-the-art tone-mapping and demosaicing methods is performed with respect to ADS object detection accuracy on traffic-related content that abounds with diverse challenging (i.e., boundary cases) scenes. The evaluation results show that the two proposed networks have better performance in object detection accuracy and image quality, than both SDR content and content obtained with the state-of-the-art tone-mapping and demosaicing algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3