Study on the Relationship between River Water and Groundwater under Different Aquifer Mediums

Author:

Gao Zongjun,Liu Wenyue,Liu Jiutan,Wang ZhenyanORCID,Wang Shu

Abstract

There is a strong river water–groundwater hydraulic connection, particularly in arid and semi-arid regions in which rivers are the main source of groundwater recharge. Therefore, a study of this relationship is of great practical significance. This study investigated this relationship for three kinds of homogeneous sand with different particle sizes using sandbox experiments. Consistent with previous studies, as the moisture of the sand decreased, the discharged water level continued to decline and the hydraulic connection between river water and groundwater was gradually lost. Discharged flow increased as the discharge level decreased and stabilized after reaching a maximum threshold. However, inconsistent with the results of previous studies, the thickness of the inverted saturation zone was not always equal to the river water depth. In addition, the maximum discharge flow resulting from cutting off the river and groundwater was different from that noted in previous studies. A coarse sand water-bearing medium resulted in a thickness of a suspended saturated zone of 15–20 cm, for 18.5 cm river water depth and 5–10 cm for 10 cm river water depth. The results for medium sand with a thickness of 5–10 cm (18.5 cm river water depth) was the disappearance of the suspended saturated water zone (10 cm river water depth), as it was for a fine sand thickness of 15–20 cm (18.5 cm river water depth), and a thickness of 10–15 cm (10 cm river water depth). The results indicated that the thickness of the inverted saturation zone formed by the separation of the connection between the river and the groundwater is not only related to the depth of the river, but also affected by various physical parameters of the aquifer. An empirical formula for calculating the thickness of the inverted saturation band is given based on the experimental results.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference24 articles.

1. Quantifying Disconnection of Groundwater From Managed‐Ephemeral Surface Water During Drought and Conjunctive Agricultural Use

2. Advances in understanding river-groundwater interactions

3. Evolution of the relationship between rivers and groundwater and some scientific issues;Wang;J. Jilin Univ. Earth Sci. Ed.,2007

4. Importance of stream infiltration data for modelling surface water–groundwater interactions

5. Research progress on the interaction between disconnected rivers and groundwater;Jin;Adv. Water Sci.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3