A Computational Fluid Dynamics Approach for the Modeling of Gas Separation in Membrane Modules

Author:

Qadir Salman,Hussain Arshad,Ahsan Muhammad

Abstract

Natural gas demand has increased rapidly across the globe in the last decade, and it is set to play an important role in meeting future energy requirements. Natural gas is mainly produced from fossil fuel and is a side product of crude oil produced beneath the earth’s crust. Materials hazardous to the environment, like CO2, H2S, and C2H4, are present in raw natural gas. Therefore, purification of the gaseous mixture is required for use in different industrial applications. A comprehensive computational fluid dynamics (CFD) model was proposed to perform the separation of natural gas from other gases using membrane modules. The CFD technique was utilized to estimate gas flow variations in membrane modules for gas separation. CFD was applied to different membrane modules to study gas transport through the membrane and flux, and to separate the binary gas mixtures. The different parameters of membrane modules, like feed and permeate pressure, module length, and membrane thickness, have been investigated successfully. CFD allows changing the specifications of membrane modules to better configure the simulation results. It was concluded that in a membrane module with increasing feed pressure, the pressure gradient also increased, which resulted in higher flux, higher permeation, and maximum purity of the permeate. Due to the high purity of the gaseous product in the permeate, the concentration polarization effect was determined to be negligible. The results obtained from the proposed CFD approach were verified by comparing with the values available in the literature.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference32 articles.

1. Computational study of gas separation using a hollow fiber membrane

2. The Effect of CO 2 Purity on the Development of Pipeline Networks for Carbon Capture and Storage Schemes

3. International Energy Outlook 2016 with Projections to 2040;Conti,2016

4. Numerical Simulation of Gas Separation by Hollow Fiber Membranehttp://preserve.lehigh.edu/etd/2624

5. A carbon capture and storage network for Yorkshire and Humber;Forward,2008

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3