A Novel MPC with Actuator Dynamic Compensation for the Marine Steam Turbine Rotational Control with a Novel Energy Dynamic Model

Author:

Liu ShengORCID,Zhao BaolingORCID,Wu Ling

Abstract

The conventional modeling method of the marine steam turbine rotational speed control system (MSTRSCS) is based on Newton’s second law, constructing the mechanical equations between the rotational acceleration and the resultant torque. The disadvantages of this are nonlinearity, a complex structure and an infinite point of discontinuity in the rotational acceleration when the rotational speed is close to 0. Taking the kinetic energy of MSTRSCS as the output variable by using the kinetic energy theorem in this paper, we convert the complex nonlinear model of MSTRSCS into a linear one, since kinetic energy and rotational speed are homeomorphic. Model predictive control (MPC) adopts a discrete-time model, whereas the real system is time-continuous. Hence, poor performance is obtained in the real system when the time-discrete control law is applied to the MSTRSCS through the actuator. In case of high requirements for system accuracy and control performance, conventional MPC (CMPC) cannot meet the engineering requirements. In order to lessen the impact of this phenomenon, this paper proposes a novel MPC with actuator dynamic compensation (ADCMPC), in which the dynamics of the actuator are quantified and the system performance is improved. Compared with other control techniques such as CMPC, the performance of the ADCMPC strategy in MSTRSCS is successfully validated.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference59 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3