Comparison of the Proteome of Staphylococcus aureus Planktonic Culture and 3-Day Biofilm Reveals Potential Role of Key Proteins in Biofilm

Author:

Rahman Md. Arifur1ORCID,Amirkhani Ardeshir2,Chowdhury Durdana1,Vickery Karen1ORCID,Hu Honghua1ORCID

Affiliation:

1. Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia

2. Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia

Abstract

Staphylococcus aureus and coagulase-negative staphylococci account for about 80% of infections associated with medical devices and are associated with increased virulence due to their ability to form biofilm. In this study, we aimed to construct a comprehensive reference map followed by significant pathway analysis in the proteome of S. aureus biofilm grown for 3 days compared with 24 h of planktonic culture using a high-resolution Tandem Mass Tag (TMT)-based MS. We identified proteins associated with secondary metabolites, ABC transporters, biosynthesis of amino acids, and response to stress, and amino sugar and nucleotide sugar metabolism were significantly upregulated in 3-day biofilm. In contrast, proteins associated with virulence factors, microbial metabolism in diverse environments, secondary metabolites, translation, and energy metabolism were significantly downregulated. GO functional annotation indicated that more proteins are involved in metabolic processes, catalytic activity, and binding in biofilm, respectively. Among the significantly dysregulated proteins, hyaluronidase (hysA) in conjunction with chitinase may play a significant role in the elimination and/or prevention of biofilm development. This study advances the understanding of the S. aureus subproteome, identifying potential pathways significant to biofilm biology. The insights gained may aid in developing new therapeutic strategies, including antibiofilm agents, for treating biofilm-related infections associated with implantable medical devices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3