Affiliation:
1. Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
2. Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
3. Baotou Teachers College, Baotou 014060, China
Abstract
The giant panda (Ailuropoda melanoleuca) is the epitome of a flagship species for wildlife conservation and also an ideal model of adaptive evolution. As an obligate bamboo feeder, the giant panda relies on the olfaction for food recognition. The number of olfactory receptor (OR) genes and the rate of pseudogenes are the main factors affecting the olfactory ability of animals. In this study, we used the chromosome-level genome of the giant panda to identify OR genes and compared the genome sequences of OR genes with five other Ursidae species (spectacled bear (Tremarctos ornatus), American black bear (Ursus americanus), brown bear (Ursus arctos), polar bear (Ursus maritimus) and Asian black bear (Ursus thibetanus)). The giant panda had 639 OR genes, including 408 functional genes, 94 partial OR genes and 137 pseudogenes. Among them, 222 OR genes were detected and distributed on 18 chromosomes, and chromosome 8 had the most OR genes. A total of 448, 617, 582, 521 and 792 OR genes were identified in the spectacled bear, American black bear, brown bear, polar bear and Asian black bear, respectively. Clustering analysis based on the OR protein sequences of the six species showed that the OR genes distributed in 69 families and 438 subfamilies based on sequence similarity, and the six mammals shared 72 OR gene subfamilies, while the giant panda had 31 unique OR gene subfamilies (containing 35 genes). Among the 35 genes, there are 10 genes clustered into 8 clusters with 10 known human OR genes (OR8J3, OR51I1, OR10AC1, OR1S2, OR1S1, OR51S1, OR4M1, OR4M2, OR51T1 and OR5W2). However, the kind of odor molecules can be recognized by the 10 known human OR genes separately, which needs further research. The phylogenetic tree showed that 345 (about 84.56%) functional OR genes were clustered as Class-II, while only 63 (about 15.44%) functional OR genes were clustered as Class-I, which required further and more in-depth research. The potential odor specificity of some giant panda OR genes was identified through the similarity to human protein sequences. Sequences similar to OR2B1, OR10G3, OR11H6 and OR11H7P were giant panda-specific lacking, which may be related to the transformation and specialization from carnivore to herbivore of the giant panda. Since our reference to flavoring agents comes from human research, the possible flavoring agents from giant panda-specific OR genes need further investigation. Moreover, the conserved motifs of OR genes were highly conserved in Ursidae species. This systematic study of OR genes in the giant panda will provide a solid foundation for further research on the olfactory function and variation of the giant panda.
Funder
National Natural Science Foundation of China
Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region
Subject
General Veterinary,Animal Science and Zoology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献