High Dietary Cation and Anion Difference and High-Dose Ascorbic Acid Modify Acid–Base and Antioxidant Balance in Dairy Goats Fed under Tropical Conditions

Author:

Semsirmboon Sapon1ORCID,Do Nguyen Dang Khoa1ORCID,Chaiyabutr Narongsak123ORCID,Poonyachoti Sutthasinee1,Lutz Thomas A.4,Thammacharoen Sumpun1

Affiliation:

1. Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand

2. The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand

3. Queen Saovabha Memorial Institute, The Thai Red Cross Society, Pathumwan, Bangkok 10330, Thailand

4. Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland

Abstract

High ambient temperature (HTa) causes acid–base imbalance and systemic oxidative stress, and this may indirectly affect the mammary gland. Furthermore, HTa induces intracellular oxidative stress, which has been proposed to affect cell metabolism directly. We previously showed in dairy goats that the negative effect of HTa was compromised by enhancing heat dissipation during a high dietary cation and anion difference (DCAD) regimen. Moreover, high-dose vitamin C or ascorbic acid (AA) supplements have been used to manage oxidative stress in ruminants. The present study hypothesized that high DCAD and AA supplements that could alleviate the HTa effect would influence the milk synthesis pathway and mammary gland function. The results showed that goats fed with high DCAD had higher blood pH than control goats in the 4th week. The high dose of AA supplement decreases urine pH in the 8th week. The percent reduction of urine pH from the AA supplement was significant in the DCAD group. The high-dose AA supplement decreased plasma glutathione peroxidase activity and malonaldehyde. This effect was enhanced by a high DCAD supplement. In addition, supplementation with AA increased milk protein and citrate and decreased milk FFA. These alterations indicate the intracellular biochemical pathway of energy metabolism and milk synthesis. It can be concluded that a high DCAD regimen and AA supplement in dairy goats fed under HTa could influence the milk synthesis pathway. The evidence suggests that HTa decreases mammary gland function by modification of acid–base homeostasis and oxidative stress.

Funder

National Research Council of Thailand (NRCT) and Thailand Science Research and Innovation (TSRI) through the Royal Golden Jubilee Ph.D. Program grant

Thailand Science research and innovation Fund, Chulalongkorn University

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3