Microbiome–Metabolome Reveals the Contribution of the Gut–Testis Axis to Sperm Motility in Sheep (Ovis aries)

Author:

Wang Mingming1ORCID,Ren Chunhuan1,Wang Penghui1,Cheng Xiao1,Chen Yale1ORCID,Huang Yafeng1ORCID,Chen Jiahong12,Sun Zhipeng1ORCID,Wang Qiangjun1,Zhang Zijun12ORCID

Affiliation:

1. College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China

2. Modern Agricultural Technology Cooperation and Popularization Center of Dingyuan County, Chuzhou 233200, China

Abstract

A close association exists among testicular function, gut microbiota regulation, and organismal metabolism. In this study, serum and seminal plasma metabolomes, and the rumen microbiome of sheep with significant differences in sperm viability, were explored. Serum and seminal plasma metabolomes differed significantly between high-motility (HM) and low-motility (LM) groups of sheep, and 39 differential metabolites closely related to sperm motility in sheep were found in seminal plasma metabolomes, while 35 were found in serum samples. A 16S rRNA sequence analysis showed that the relative abundance of HM and LM rumen microorganisms, such as Ruminococcus and Quinella, was significantly higher in the HM group, whereas genera such as Rikenellaceae_RC9_gut_group and Lactobacillus were enriched in the mid-LM group. Serum hormone assays revealed that serum follicle-stimulating hormone (FSH) and MT levels were significantly lower in the LM group than in the HM group, whereas serum glucocorticoid (GC) levels were higher in the LM group than in the HM group, and they all affected sperm motility in sheep. Ruminococcus and other rumen microorganisms were positively correlated with sperm motility, whereas Lactobacillus was negatively correlated with FSH and GCs levels. Our findings suggest that rumen microbial activity can influence the host metabolism and hormone levels associated with fertility in sheep.

Funder

China Agriculture Research System of MOF and MARA

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3