Abstract
The development of tidal energy in Australia is still a challenge with few studies performed on the characterisation of the resource, due to the difficulty to acquire data and uncertainties about the influence of this anthropogenic activity on the marine environment. Changes in flow could lead to alterations in sediment transport and have further influence on the marine habitat. A case study in a promising area, Banks Strait (Australia), was created using high resolution 2D and 3D models validated against in situ data to investigate changes to hydrodynamic conditions with two scenarios of tidal farms (100 and 300 turbines). Comparison between 2D and 3D is performed to find the best compromise between model accuracy and computational time for preliminary assessment. Changes to current speed and bed shear stress over a 35 day period were found to be localised around the tidal farms and did not extent more than 7 km from the farm (300 turbines) for both 2D and 3D. The results showed that for near field and far field, 2D models are sufficient to give a first approximation of the hydrodynamic influence of tidal farm deployment on its environment.
Funder
Australian Renewable Energy Agency
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献