Hydroelectric Operation Optimization and Unexpected Spillage Indications

Author:

Abritta RamonORCID,Panoeiro Frederico,Honório LeonardoORCID,Silva Junior Ivo,Marcato AndréORCID,Guimarães Anapaula

Abstract

It is widely known that hydroelectric power plants benefit from optimized operation schedules, since the latter prevent water and, therefore, monetary wastes, contributing to significant environmental and economic gains. The level of detail on the representation of such systems is related to how far ahead the planning horizon is extended. Aiming at the very short-term optimization of hydroelectric power plants, which usually requires the most detailed models, this paper addresses an undesired effect that, despite being already mentioned in the literature, has not been properly explored and explained yet. This effect is given by the indication of spillage by the optimizer, even when the reservoir does not reach its maximum capacity. Simulations implemented in Julia language using real power plant data expose this phenomenon. Possible ways to circumvent it are presented. Results showed that, in specific cases, spillage allows the achieving of more efficient operating points by reducing the gross head and increasing the amount of water that flows through turbines. Furthermore, it was verified that applying water outflow-based objective functions prevents undesired spillage indications, despite causing machines to operate at lower efficiency levels, compared with the utilization of power losses-based objective functions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3