Can Technological Development Compensate for the Unfavorable Impacts of Climate Change? Conclusions from 50 Years of Maize (Zea mays L.) Production in Hungary

Author:

Huzsvai László,Zsembeli JózsefORCID,Kovács ElzaORCID,Juhász CsabaORCID

Abstract

The goals of our study were to evaluate the historical aspects of maize (Zea mays L.) production in Hungary, and to provide a prognosis for the yield for 2050 based on the trends of temperature, precipitation, and climatic water balance changes. Different climate zones for the period of 1970–2019 were investigated by means of correlation analyses, normality tests, time series analysis, and multiple linear regression analysis. Two well-distinguishable linear trends in the yields were found, the first representing large-scale farming, and the second starting with the change of the socio-economic system in 1989. The annual amount of precipitation showed high variations both spatially and temporally, although no significant change was identified for the last five decades. In the period 1990–2019, not only were higher temperatures characteristic, but the frequency of extreme high temperature values (Tmax > 30 °C) also increased. We quantified the heat stress, expressing it in heat stress units (HSU, °C) derived from the heat-sum of the daily maximum air temperature values above 30 °C. By 2050, the average increase in HSUs may reach 35 °C. Increasing HSU causes yield depression; according to our estimations, a 1 °C increase in HSU results in a 23 kg ha−1 yield depression of maize. Taking the unfavorable effect of heat stress and technological development into consideration, the average domestic yield of maize will be 8.2 t ha−1. Our study revealed that without taking technological development into consideration, prediction models may overestimate the adverse effect of climate change on crop production.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference69 articles.

1. Corn Grain Yield Trends: Eyes of the Beholder;Nielsen,2006

2. Impacts and adaptation of European crop production systems to climate change

3. Hybrid maize in Hungary is 60 years old;Marton,2013

4. Climate Smart Agriculture

5. Historical Corn Grain Yields in the U.S;Nielsen,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3