Statistical Analysis and Interpretation of High-, Mid- and Low-Latitude Responses in Regional Electron Content to Geomagnetic Storms

Author:

Ratovsky Konstantin G.,Klimenko Maxim V.ORCID,Yasyukevich Yury V.ORCID,Klimenko Vladimir V.,Vesnin Artem M.

Abstract

Geomagnetic storm is one of the most powerful factors affecting the state of the Earth’s ionosphere. Revealing the significance of formation mechanisms for ionospheric storms is still an unresolved problem. The purpose of the study is to obtain a statistical pattern of the response in regional electron content to geomagnetic storms on a global scale to interpret the results using the upper atmosphere model (the Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere), to make the detailed comparison with the thermospheric storm concept, and to compare the obtained pattern with results from previous statistical studies. The regional electron content is calculated based on the global ionospheric maps data, which allows us to cover the midlatitude and high-latitude zones of both hemispheres, as well as the equatorial zone. Most of the obtained statistical pattern agrees with the thermospheric storm concept and with the previous statistical studies: ionospheric responses at ionospheric storm main phases including their seasonal dependences for the high- and midlatitudes and some features of ionospheric responses at recovery phases. However, some of the statistical patterns are inconsistent with the thermospheric storm concept or contradicts the previous statistical studies: negative midlatitude ionospheric responses at recovery phases in the local winter, the domination of the spring response in the equatorial zone, seasonal features of the positive after-effects, the interhemispheric asymmetry of ionospheric responses, and the prestorm enhancement. We obtained that the contribution of electric field to the interpretation of the zonal and diurnal averaged storm-time regional electron content (REC) disturbances is insignificant. The positive after-storm effects at different latitudes are caused by n(O) disturbances.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference66 articles.

1. Storms in the ionosphere: Patterns and processes for total electron content

2. Ionospheric F2-Layer Storms;Mikhailov;Fisica de la Tierra,2000

3. Ionospheric storms at mid-latitudes: A short review;Prölss,2008

4. Ionospheric Precursors of Geomagnetic Storms. 1. A Review of the Problem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3