Determining the Impact of Wildland Fires on Ground Level Ambient Ozone Levels in California

Author:

Cisneros RicardoORCID,K. Preisler Haiganoush,Schweizer Donald,Gharibi Hamed

Abstract

Wildland fire smoke is visible and detectable with remote sensing technology. Using this technology to assess ground level pollutants and the impacts to human health and exposure is more difficult. We found the presence of satellite derived smoke plumes for more than a couple of hours in the previous three days has significant impact on the chances of ground level ozone values exceeding the norm. While the magnitude of the impact will depend on characteristics of fires such as size, location, time in transport, or ozone precursors produced by the fire, we demonstrate that information on satellite derived smoke plumes together with site specific regression models provide useful information for supporting causal relationship between smoke from fire and ozone exceedances of the norm. Our results indicated that fire seasons increasing the median ozone level by 15 ppb. However, they seem to have little impact on the metric used for regulatory compliance, in particular at urban sites, except possibly during the 2008 forest fires in California.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3