Characteristics of LDAPS-Predicted Surface Wind Speed and Temperature at Automated Weather Stations with Different Surrounding Land Cover and Topography in Korea

Author:

Kim Dong-Ju,Kang Geon,Kim Do-Yong,Kim Jae-JinORCID

Abstract

We investigated the characteristics of surface wind speeds and temperatures predicted by the local data assimilation and prediction system (LDAPS) operated by the Korean Meteorological Administration. First, we classified automated weather stations (AWSs) into four categories (urban flat (Uf), rural flat (Rf), rural mountainous (Rm), and rural coastal (Rc) terrains) based on the surrounding land cover and topography, and selected 25 AWSs representing each category. Then we calculated the mean bias error of wind speed (WE) and temperature (TE) using AWS observations and LDAPS predictions for the 25 AWSs in each category for a period of 1 year (January–December 2015). We found that LDAPS overestimated wind speed (average WE = 1.26 m s−1) and underestimated temperature (average TE = −0.63 °C) at Uf AWSs located on flat terrain in urban areas because it failed to reflect the drag and local heating caused by buildings. At Rf, located on flat terrain in rural areas, LDAPS showed the best performance in predicting surface wind speed and temperature (average WE = 0.42 m s−1, average TE = 0.12 °C). In mountainous rural terrain (Rm), WE and TE were strongly correlated with differences between LDAPS and actual altitude. LDAPS underestimated (overestimated) wind speed (temperature) for LDAPS altitudes that were lower than actual altitude, and vice versa. In rural coastal terrain (Rc), LDAPS temperature predictions depended on whether the grid was on land or sea, whereas wind speed did not depend on grid location. LDAPS underestimated temperature at grid points on the sea, with smaller TE obtained for grid points on sea than on land.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3