Abstract
The objective of this study was to analyze the influence of large-scale atmospheric–oceanic mechanisms (El Niño–Southern Oscillation—ENSO and the inter-hemispheric thermal gradient of the Tropical Atlantic) on the spatial–temporal variability of soy yield in MATOPIBA. The following, available in the literature, were used: (i) daily meteorological data from 1980 to 2013 (Xavier et al., 2016); (ii) (chemical, physical, and hydric) properties of the predominant soil class in the area of interest, available at the World Inventory of Soil Emission Potentials platform; (iii) genetic coefficients of soybean cultivar with Relative Maturity Group adapted to the conditions of the region. The simulations were performed using the CROPGRO-Soybean culture model of the Decision Support System for Agrotechnology Transfer (DSSAT) system, considering sowing dates between the months of October and December of 33 agricultural years, as well as for three meteorological scenarios (climatology, favorable-wet, and unfavorable-dry). Results showed that the different climate scenarios can alter the spatial patterns of agricultural risk. In the favorable-wet scenario, there was a greater probability of an increase in yield and a greater favorable window for sowing soybean, while in the unfavorable-dry scenario these values were lower. However, considering the unfavorable-dry scenario, in some areas the reduction in yield losses will depend on the chosen planting date.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献