The Significance of Fast Radiative Transfer for Hyperspectral SWIR XCO2 Retrievals

Author:

Somkuti PeterORCID,Bösch HartmutORCID,Parker Robert J.ORCID

Abstract

Fast radiative transfer (RT) methods are commonplace in most algorithms which retrieve the column-averaged dry-mole fraction of carbon dioxide (XCO2) in the Earth’s atmosphere. These methods are required to keep the computational effort at a manageable level and to allow for operational processing of tens of thousands of measurements per day. Without utilizing any fast RT method, the involved computation times would be one to two orders of magnitude larger. In this study, we investigate three established methods within the same retrieval algorithm, and for the first time, analyze the impact of the fast RT method while keeping every other aspect of the algorithm the same. We perform XCO2 retrievals on measurements from the OCO-2 instrument and apply quality filters and parametric bias correction. We find that the central 50% of scene-by-scene differences in XCO2 between retrieval sets, after threshold filtering and bias correction, that use different fast RT methods, are less than 0.40 ppm for land scenes, and less than 0.11 ppm for ocean scenes. Significant regional differences larger than 0.3 ppm are observed and further studies with larger samples and regional-scale subsets need to be undertaken to fully understand the impact on applications that utilize space-based XCO2.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3