Atmospheric Nitrogen Deposition to a Southeast Tibetan Forest Ecosystem

Author:

Wang Wei,Guan Lixue,Wen Zhang,Ma Xin,Fang Jiangping,Liu XuejunORCID

Abstract

With atmospheric reactive nitrogen (Nr) emissions increasing globally, research into Nr deposition has attracted increasing attention, especially in remote environments. These ecosystems are very sensitive to global change, especially enhanced Nr deposition. Forest environments, in particular, are highlighted because of their important ecological function. We quantified atmospheric Nr concentrations and deposition over four years of continuous monitoring in a southeast Tibetan boreal forest ecosystem, an ecosystem in which forest biomass and carbon density are high around the world. Average annual bulk Nr deposition was 3.00 kg N ha−1 y−1, with those of reduced and oxidized species estimated at 1.60 and 1.40 kg N ha−1 y−1, respectively. Bulk deposition of both NH4+ and NO3− were controlled by precipitation amount: both Nr deposition and precipitation were highest in summer and lowest in winter. Dry deposition of NH3 and NO2 were 1.18 and 0.05 kg N ha−1 y−1, respectively. Atmospheric NH3 concentrations were in the range 1.15–3.53 mg N L−1, highest in summer and lowest in winter. In contrast, no clear trend in seasonal NO2 concentrations was observed. Monthly NO2 concentrations were 0.79–1.13 mg N L−1. Total Nr deposition (bulk plus dry) was 4.23 (3.00 + 1.23) kg N ha−1 y−1 in the forest. Reduced nitrogen was the dominant species. In conclusion, Nr deposition was in the range at which forest net productivity and carbon sequestration are sensitive to any variation in nitrogen input, so quantification of Nr deposition should continue and with greater detail.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3