Mitigation of Gaseous Emissions from Swine Manure with the Surficial Application of Biochars

Author:

Meiirkhanuly Zhanibek,Koziel Jacek A.ORCID,Chen BaitongORCID,Białowiec AndrzejORCID,Lee MyeongseongORCID,Wi JisooORCID,Banik ChumkiORCID,Brown Robert C.,Bakshi Santanu

Abstract

Environmental impact associated with odor and gaseous emissions from animal manure is one of the challenges for communities, farmers, and regulatory agencies. Microbe-based manure additives treatments are marketed and used by farmers for mitigation of emissions. However, their performance is difficult to assess objectively. Thus, comprehensive, practical, and low-cost treatments are still in demand. We have been advancing such treatments based on physicochemical principles. The objective of this research was to test the effect of the surficial application of a thin layer (¼ inches; 6.3 mm) of biochar on the mitigation of gaseous emissions (as the percent reduction, % R) from swine manure. Two types of biochar were tested: highly alkaline and porous (HAP) biochar made from corn stover and red oak (RO), both with different pH and morphology. Three 30-day trials were conducted with a layer of HAP and RO (2.0 & 1.65 kg∙m−2, respectively) applied on manure surface, and emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) were measured. The manure and biochar type and properties had an impact on the mitigation effect and its duration. RO significantly reduced NH3 (19–39%) and p-cresol (66–78%). H2S was mitigated (16~23%), but not significantly for all trials. The phenolic VOCs had relatively high % R in most trials but not significantly for all trials. HAP reduced NH3 (4~21%) and H2S (2~22%), but not significantly for all trials. Significant % R for p-cresol (91~97%) and skatole (74~95%) were observed for all trials. The % R for phenol and indole ranged from (60~99%) and (29~94%) but was not significant for all trials. The impact on GHGs, isobutyric acid, and the odor was mixed with some mitigation and generation effects. However, larger-scale experiments are needed to understand how biochar properties and the dose and frequency of application can be optimized to mitigate odor and gaseous emissions from swine manure. The lessons learned can also be applicable to surficial biochar treatment of gaseous emissions from other waste and area sources.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference60 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3