Snow Surface Albedo Sensitivity to Black Carbon: Radiative Transfer Modelling

Author:

Beres Nicholas D.ORCID,Lapuerta MagínORCID,Cereceda-Balic Francisco,Moosmüller HansORCID

Abstract

The broadband surface albedo of snow can greatly be reduced by the deposition of light-absorbing impurities, such as black carbon on or near its surface. Such a reduction increases the absorption of solar radiation and may initiate or accelerate snowmelt and snow albedo feedback. Coincident measurements of both black carbon concentration and broadband snow albedo may be difficult to obtain in field studies; however, using the relationship developed in this simple model sensitivity study, black carbon mass densities deposited can be estimated from changes in measured broadband snow albedo, and vice versa. Here, the relationship between the areal mass density of black carbon found near the snow surface to the amount of albedo reduction was investigated using the popular snow radiative transfer model Snow, Ice, and Aerosol Radiation (SNICAR). We found this relationship to be linear for realistic amounts of black carbon mass concentrations, such as those found in snow at remote locations. We applied this relationship to measurements of broadband albedo in the Chilean Andes to estimate how vehicular emissions contributed to black carbon (BC) deposition that was previously unquantified.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3