Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5

Author:

Vinson Alex,Sidwell Allie,Black OscarORCID,Roper CourtneyORCID

Abstract

Exposure to fine particulate matter (PM2.5) has well-established systemic human health effects due in part to the chemical components associated with these exposures. Oxidative stress is a hypothesized mechanism for the health effects associated with PM2.5 exposures. The oxidative potential of PM2.5 has recently been suggested as a metric that is more indicative of human health effects than the routinely measured PM2.5 concentration. The purpose of this study was to analyze and compare the oxidative potential and elemental composition of PM2.5 collected at two locations during different seasons. PM2.5 was collected onto PTFE-coated filters (n = 16) along two highways in central Oregon, USA in the Winter (January) and Summer (July/August). PM2.5 was extracted from each filter via sonication in methanol. An aliquot of the extraction solution was used to measure oxidative potential using the dithiothreitol (DTT) assay. An additional aliquot underwent analysis via inductively coupled plasma—mass spectrometry (ICP-MS) to quantify elements (n = 20). Differences in PM2.5 elemental composition were observed between locations and seasons as well as between days in the same season. Overall, concentrations were highest in the winter samples but the contribution to total PM2.5 mass was higher for elements in the summer. Notably, the oxidative potential (nM DTT consumed/µg PM2.5/min) differed between seasons with summer samples having nearly a two-fold increase when compared to the winter. Significant negative correlations that were observed between DTT consumption and several elements as well as with PM2.5 mass but these findings were dependent on if the data was normalized by PM2.5 mass. This research adds to the growing evidence and justification for investigating the oxidative potential and composition of PM2.5 while also highlighting the seasonal variability of these factors.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference51 articles.

1. In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential—The RAPTES project;Steenhof;Part Fibre Toxicol.,2011

2. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution

3. Ambient (Outdoor) Air Pollutionhttps://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

4. Standards—Air Quality—Environment—European Commissionhttps://ec.europa.eu/environment/air/quality/standards.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3