Mesosphere Ozone and the Lower Ionosphere under Plasma Disturbance by Powerful High-Frequency Radio Emission

Author:

Bakhmetieva Nataliya V.,Kulikov Yuri Yu.,Zhemyakov Ilia N.

Abstract

We present the results of experiments on the Earth’s lower ionosphere at mesospheric heights by creating artificial periodic irregularities (APIs) of the ionospheric plasma and simultaneous measurement of the atmospheric emission spectrum in the ozone line by ground-based microwave radiometry when the ionosphere was disturbed by powerful high-frequency radio emission from the midlatitude SURA heating facility (56.15° N; 46.11° E). The diagnostics of the ionosphere was carried out on the basis of measuring amplitudes and phases of signals scattered by periodic irregularities in the altitude range of 50–130 km. For each heating session lasting 30 min, two ozone spectra were measured. These spectra were compared with the measured spectra the periods when heating was turned off. During the heating session of the ionosphere, a decrease in the intensity of the microwave radiation of the atmosphere in the ozone line was observed. The lower ionosphere was characterized by intense dynamics. Rapid variations in the amplitude of the scattered signal and the relaxation time of artificial periodic irregularities were observed. The velocity of a regular vertical movement in the D-region of the ionosphere constantly varied direction with average minute values up to 4–5 m/s. We assume the decrease in the ozone emission spectrum at the altitude of 60 km can be explained by an increase in the coefficient of electron attachment to oxygen molecules during heating sessions. The lower boundary of the region enriched with atomic oxygen was estimated from the height profile of the API relaxation time.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3