City-Scale Building Anthropogenic Heating during Heat Waves

Author:

Luo XuanORCID,Vahmani Pouya,Hong TianzhenORCID,Jones Andrew

Abstract

More frequent and longer duration heat waves have been observed worldwide and are recognized as a serious threat to human health and the stability of electrical grids. Past studies have identified a positive feedback between heat waves and urban heat island effects. Anthropogenic heat emissions from buildings have a crucial impact on the urban environment, and hence it is critical to understand the interactive effects of urban microclimate and building heat emissions in terms of the urban energy balance. Here we developed a coupled-simulation approach to quantify these effects, mapping urban environmental data generated by the mesoscale Weather Research and Forecasting (WRF) coupled to Urban Canopy Model (UCM) to urban building energy models (UBEM). We conducted a case study in the city of Los Angeles, California, during a five-day heat wave event in September 2009. We analyzed the surge in city-scale building heat emission and energy use during the extreme heat event. We first simulated the urban microclimate at a high resolution (500 m by 500 m) using WRF-UCM. We then generated grid-level building heat emission profiles and aggregated them using prototype building energy models informed by spatially disaggregated urban land use and urban building density data. The spatial patterns of anthropogenic heat discharge from the building sector were analyzed, and the quantitative relationship with weather conditions and urban land-use dynamics were assessed at the grid level. The simulation results indicate that the dispersion of anthropogenic heat from urban buildings to the urban environment increases by up to 20% on average and varies significantly, both in time and space, during the heat wave event. The heat dispersion from the air-conditioning heat rejection contributes most (86.5%) of the total waste heat from the buildings to the urban environment. We also found that the waste heat discharge in inland, dense urban districts is more sensitive to extreme events than it is in coastal or suburban areas. The generated anthropogenic heat profiles can be used in urban microclimate models to provide a more accurate estimation of urban air temperature rises during heat waves.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3