Abstract
In New York State (NYS), episodic high fine particulate matter (PM2.5) concentrations associated with aerosols originated from the Midwest, Mid-Atlantic, and Pacific Northwest states have been reported. In this study, machine learning techniques, including multiple linear regression (MLR) and artificial neural network (ANN), were used to estimate surface PM2.5 mass concentrations at air quality monitoring sites in NYS during the summers of 2016–2019. Various predictors were considered, including meteorological, aerosol, and geographic predictors. Vertical predictors, designed as the indicators of vertical mixing and aloft aerosols, were also applied. Overall, the ANN models performed better than the MLR models, and the application of vertical predictors generally improved the accuracy of PM2.5 estimation of the ANN models. The leave-one-out cross-validation results showed significant cross-site variations and were able to present the different predictor-PM2.5 correlations at the sites with different PM2.5 characteristics. In addition, a joint analysis of regression coefficients from the MLR model and variable importance from the ANN model provided insights into the contributions of selected predictors to PM2.5 concentrations. The improvements in model performance due to aloft aerosols were relatively minor, probably due to the limited cases of aloft aerosols in current datasets.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献