Clinical Effect Analysis of Wearable Sensor Technology-Based Gait Function Analysis in Post-Transcranial Magnetic Stimulation Stroke Patients

Author:

Wang Litong12ORCID,Wang Likai2,Wang Zhan2ORCID,Gao Fei2,Wu Jingyi2,Tang Hong1ORCID

Affiliation:

1. School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China

2. Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian 116033, China

Abstract

(1) Background: This study evaluates the effectiveness of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) in improving gait in post-stroke hemiplegic patients, using wearable sensor technology for objective gait analysis. (2) Methods: A total of 72 stroke patients were randomized into control, sham stimulation, and LF-rTMS groups, with all receiving standard medical treatment. The LF-rTMS group underwent stimulation on the unaffected hemisphere for 6 weeks. Key metrics including the Fugl-Meyer Assessment Lower Extremity (FMA-LE), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and gait parameters were measured before and after treatment. (3) Results: The LF-rTMS group showed significant improvements in the FMA-LE, BBS, MBI, and various gait parameters compared to the control and sham groups (p < 0.05). Specifically, the FMA-LE scores improved by an average of 5 points (from 15 ± 3 to 20 ± 2), the BBS scores increased by 8 points (from 35 ± 5 to 43 ± 4), the MBI scores rose by 10 points (from 50 ± 8 to 60 ± 7), and notable enhancements in gait parameters were observed: the gait cycle time was reduced from 2.05 ± 0.51 s to 1.02 ± 0.11 s, the stride length increased from 0.56 ± 0.04 m to 0.97 ± 0.08 m, and the walking speed improved from 35.95 ± 7.14 cm/s to 75.03 ± 11.36 cm/s (all p < 0.001). No adverse events were reported. The control and sham groups exhibited improvements but were not as significant. (4) Conclusions: LF-rTMS on the unaffected hemisphere significantly enhances lower-limb function, balance, and daily living activities in subacute stroke patients, with the gait parameters showing a notable improvement. Wearable sensor technology proves effective in providing detailed, objective gait analysis, offering valuable insights for clinical applications in stroke rehabilitation.

Funder

National Natural Science Foundation of China

Dalian Science and Technology Innovation Fund

Publisher

MDPI AG

Reference26 articles.

1. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association;Martin;Circulation,2024

2. Jackson, G., and Chari, K. (2024, April 30). National Hospital Care Survey Demonstration Projects: Stroke Inpatient Hospitalizations, Available online: https://stacks.cdc.gov/view/cdc/82568.

3. WHO (2024, April 30). Stroke, Cerebrovascular Accident. Available online: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html.

4. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association;Tsao;Circulation,2023

5. Mild Stroke, Serious Problems: Limitations in Balance and Gait Capacity and the Impact on Fall Rate, and Physical Activity;Roelofs;Neurorehabil. Neural Repair,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3