MAPSkew: Metaheuristic Approaches for Partitioning Skew in MapReduce

Author:

Pericini Matheus,Leite Lucas,de Carvalho-Junior Francisco,Machado Javam,Rezende Cenez

Abstract

MapReduce is a parallel computing model in which a large dataset is split into smaller parts and executed on multiple machines. Due to its simplicity, MapReduce has been widely used in various applications domains. MapReduce can significantly reduce the processing time of a large amount of data by dividing the dataset into smaller parts and processing them in parallel in multiple machines. However, when data are not uniformly distributed, we have the so called partitioning skew, where the allocation of tasks to machines becomes unbalanced, either by the distribution function splitting the dataset unevenly or because a part of the data is more complex and requires greater computational effort. To solve this problem, we propose an approach based on metaheuristics. For evaluating purposes, three metaheuristics were implemented: Simulated Annealing, Local Beam Search and Stochastic Beam Search. Our experimental evaluation, using a MapReduce implementation of the Bron-Kerbosch Clique Algorithm, shows that the proposed method can find good partitionings while better balancing data among machines.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3