Author:
Wang Chengcheng,Liu Yaqiu,Wang Peiyu
Abstract
Considering the linear motion of particleboards in the production line, the detection of surface defects in particleboards is a major challenge. In this paper, a method based on moving target tracking is proposed for the detection of surface defects in particleboards. To achieve this, the kernel correlation filter (KCF) target tracking algorithm was modified with the median flow algorithm and used to capture the moving targets of surface defects. The defect images were extracted by a Sobel operator, and the defect number, the defect area, and the degree of damage were calculated. The level of surface defect in particleboards was evaluated by fuzzy pattern recognition. Experiments were then carried out to prove the effectiveness and accuracy of the proposed method.
Funder
National Natural Science Foundation of China
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献