Differences of Training Structures on Stimulus Class Formation in Computational Agents

Author:

Carrillo Alexis1ORCID,Betancort Moisés1ORCID

Affiliation:

1. Departamento de Psicología Clínica, Psicobiología y Metodología, Campus de Guajara, Universidad de La Laguna, Apartado 456, 38200 San Cristóbal de La Laguna, Spain

Abstract

Stimulus Equivalence (SE) is a behavioural phenomenon in which organisms respond functionally to stimuli without explicit training. SE provides a framework in the experimental analysis of behaviour to study language, symbolic behaviour, and cognition. It is also a frequently discussed matter in interdisciplinary research, linking behaviour analysis with linguistics and neuroscience. Previous research has attempted to replicate SE with computational agents, mostly based on Artificial Neural Network (ANN) models. The aim of this paper was to analyse the effect of three Training Structures (TSs) on stimulus class formation in a simulation with ANNs as computational agents performing a classification task, in a matching-to-sample procedure. Twelve simulations were carried out as a product of the implementation of four ANN architectures on the three TSs. SE was not achieved, but two agents showed an emergent response on half of the transitivity test pairs on linear sequence TSs and reflexivity on one member of the class. The results suggested that an ANN with a large enough number of units in a hidden layer can perform a limited number of emergent relations within specific experimental conditions: reflexivity on B and transitivity on AC, when pairs AB and BC are trained on a three-member stimulus class and tested in a classification task. Reinforcement learning is proposed as the framework for further simulations.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3