Analysis and Design of a CLC/N Compensated CC-Type WPT System with Compact and Low-Cost Receiver

Author:

Yang LinORCID,Jiang Shuai,Wang Can,Zhang Li

Abstract

Wireless power transfer (WPT) has been extensively studied by technicians for its advantages of safety, convenience and aesthetics. The load-independent constant current (CC) output is the focus of WPT research and has been initially applied in various fields, such as light-emitting diodes (LEDs) driving, CC charging of electric vehicles (EVs), etc. However, the existing CC-type WPT system has problems in that the output current is constrained by the loosely coupled transformer (LCT) parameters, the receiver is bulky, and the development cost is high. Therefore, this manuscript proposes a new CLC/None (CLC/N) compensated WPT system with a CC output function that eliminates the receiver-side compensation components, ensures the compactness of the receiver, and saves on production costs. The conditions for satisfying the CC output and zero-phase-angle (ZPA) operation of the proposed system are first discussed. Then, the detailed parameter design method is provided, and the characteristic that the output current is unconstrained by the LCT parameters is illustrated. In addition, the implementation of zero-voltage switching (ZVS) operation of the proposed system and the sensitivity of the changes of compensation components to the output current are analyzed in detail. Furthermore, to demonstrate the superiority of the proposed system, several other typical CC-type WPT systems are introduced for comparison. Finally, a confirmatory experimental prototype with an output current of 2 A is fabricated, and the experimental results are consistent with the theoretical analysis.

Funder

Key Research Program of Higher Education of Henan

Natural Science Foundation of Henan Province of China

Doctor Initiative Foundation of Henan Normal University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3