A Hybrid Scheme for Disaster-Monitoring Applications in Wireless Sensor Networks

Author:

Chen Danqi1ORCID,Zhang Yanxia1,Pang Guoli1,Gao Fangping1,Duan Li2

Affiliation:

1. School of Information Engineering, Institute of Disaster Prevention, Sanhe 065201, China

2. College of Electronic Science and Control Engineering, Institute of Disaster Prevention, Sanhe 065201, China

Abstract

Disaster monitoring is a primary task for wireless sensor networks. Systems for the rapid reporting of earthquake information are a crucial aspect of disaster monitoring. Furthermore, during emergency rescue after a large earthquake, wireless sensor networks can provide pictures and sound information to save lives. Therefore, when accompanied by multimedia data flow, the alert and seismic data sent by the seismic monitoring nodes must be sufficiently fast. We present herein the architecture of a collaborative disaster-monitoring system that can obtain seismic data in a highly energy-efficient manner. In this paper, a hybrid superior node token ring MAC scheme is proposed for disaster monitoring in wireless sensor networks. This scheme consists of set-up and steady-state stages. A clustering approach was proposed for heterogeneous networks during the set-up stage. The proposed MAC operates in the duty cycle mode at the steady-state stage and is based on the virtual token ring of ordinary nodes, the polling all the superior nodes in one period, and alert transmissions with a low-power listening and shortened preamble approach during the sleep state. The proposed scheme can simultaneously satisfy the requirements of three types of data in disaster-monitoring applications. Based on embedded Markov chains, a model of the proposed MAC was developed and the mean queue length, mean cycle time, and mean upper bound of the frame delay were obtained. Using simulations under various conditions, the clustering approach performed better than the pLEACH approach, and the theoretical results of the proposed MAC were verified. We found that alerts and superior data have outstanding delay and throughput performances even under heavy traffic intensity, and the proposed MAC can provide a data rate of several hundred kb/s for superior and ordinary data. Considering all three types of data, the frame delay performances of the proposed MAC are better than those of the WirelessHART and DRX schemes, and the alert data of the proposed MAC have a maximum frame delay of 15 ms. These satisfy the application requirements of disaster monitoring.

Funder

Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government

Langfang Science and Technology Research Self-Funded Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3