Obtaining of ZnO/Fe2O3 Thin Nanostructured Films by AACVD for Detection of ppb-Concentrations of NO2 as a Biomarker of Lung Infections

Author:

Mokrushin Artem S.1ORCID,Gorban Yulia M.12,Averin Aleksey A.3ORCID,Gorobtsov Philipp Yu.1ORCID,Simonenko Nikolay P.1ORCID,Lebedinskii Yury Yu.4,Simonenko Elizaveta P.1ORCID,Kuznetsov Nikolay T.1

Affiliation:

1. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia

2. Faculty of Technology of Inorganic Substances and High Temperature Materials, Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia

3. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 199071, Russia

4. Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia

Abstract

ZnO/Fe2O3 nanocomposites with different concentration and thickness of the Fe2O3 layer were obtained by two-stage aerosol vapor deposition (AACVD). It was shown that the ZnO particles have a wurtzite structure with an average size of 51–66 nm, and the iron oxide particles on the ZnO surface have a hematite structure and an average size of 23–28 nm. According to EDX data, the iron content in the films was found to be 1.3–5.8 at.%. The optical properties of the obtained films were studied, and the optical band gap was found to be 3.16–3.26 eV. Gas-sensitive properties at 150–300 °C were studied using a wide group of analyte gases: CO, NH3, H2, CH4, C6H6, ethanol, acetone, and NO2. A high response to 100 ppm acetone and ethanol at 225–300 °C and a high and selective response to 300–2000 ppb NO2 at 175 °C were established. The effect of humidity on the magnitude and shape of the signal obtained upon NO2 detection was studied.

Funder

President of the Russian Federation

Ministry of Science and Higher Education of the Russian Federation under a state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3