Graph Feature Refinement and Fusion in Transformer for Structural Damage Detection

Author:

Hu Tianjie12,Ma Kejian12,Xiao Jianchun12ORCID

Affiliation:

1. Research Center of Space Structures, Guizhou University, Guiyang 550025, China

2. Key Laboratory of Structural Engineering of Guizhou Province, Guiyang 550025, China

Abstract

Structural damage detection is of significance for maintaining the structural health. Currently, data-driven deep learning approaches have emerged as a highly promising research field. However, little progress has been made in studying the relationship between the global and local information of structural response data. In this paper, we have presented an innovative Convolutional Enhancement and Graph Features Fusion in Transformer (CGsformer) network for structural damage detection. The proposed CGsformer network introduces an innovative approach for hierarchical learning from global to local information to extract acceleration response signal features for structural damage representation. The key advantage of this network is the integration of a graph convolutional network in the learning process, which enables the construction of a graph structure for global features. By incorporating node learning, the graph convolutional network filters out noise in the global features, thereby facilitating the extraction to more effective local features. In the verification based on the experimental data of four-story steel frame model experiment data and IASC-ASCE benchmark structure simulated data, the CGsformer network achieved damage identification accuracies of 92.44% and 96.71%, respectively. It surpassed the existing traditional damage detection methods based on deep learning. Notably, the model demonstrates good robustness under noisy conditions.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3