Effects of Leaf Hydrophilicity and Stomatal Regulation on Foliar Water Uptake Capacity of Desert Plants

Author:

Wang Huimin12,Li Zhoukang12,Yang Jianjun12

Affiliation:

1. College of Ecology and Environment, Xinjiang University, Urumqi 830046, China

2. Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830046, China

Abstract

Foliar water uptake (FWU) is one of the primary water sources for desert plants. Desert plants’ water uptake capacity is essential in maintaining the balance of carbon and water. However, there are few studies on FWU capacity in desert plants and the physiological and ecological characteristics that lead to differences in FWU capacity. In order to clarify FWU strategies and the influencing factors of plants in desert ecosystems, this study measured the contact angle, FWU parameters, and hydraulic parameters to explore six desert plants’ FWU capacity and the effects of leaf wettability and hydraulic parameters on FWU capacity. The results showed that all six plants had FWU capacity, among which the leaves of Nitraria sibirica Pall. and Halimodendron halodendron (Pall.) Voss had a high foliar water uptake rate (k) and high foliar water uptake accumulation (FWU storage), and the leaves of Glycyrrhiza uralensis Fisch. had a high k and low FWU storage. The leaves of Populus euphratica Oliv., Apocynum hendersonii Hook. f., and Alhagi sparsifolia Shap. had a low k and low FWU storage. Additionally, FWU capacity was mainly affected by stomatal regulation compared with leaf wettability and leaf structure. The results of this study will help to improve the understanding of the physiological and ecological adaptability of desert plants.

Funder

National Natural Science Foundation of China

Xinjiang Uygur Autonomous Region innovation environment Construction special project & Science and technology innovation base construction project

Xinjiang Uygur Autonomous Region Graduate Research and Innovation Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3