Affiliation:
1. Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou 510520, China
Abstract
The essential oil of Cinnamomum burmannii (Nees and T. Nees) Blume is rich in monoterpenes and sesquiterpenes. The post-transcriptional regulatory mechanisms controlling the expression of terpenoid-related genes have not yet been clarified in C. burmannii. Here, we conducted a metabolomic analysis of the leaves of C. burmannii across four developmental stages using gas chromatography–mass spectrometry. We also identified miRNAs and their target genes involved in terpenoid biosynthesis using small RNA sequencing. A total of 135 differentially expressed metabolites were detected, including 65 terpenoids, 15 aldehydes, and 13 benzenes. A total of 876 miRNAs from 148 families were detected, among which 434 miRNAs were differentially expressed, including three known miRNAs and 431 novel miRNAs. Four miRNAs (gma-miR5368, novel_miR_377, novel_miR_111, and novel_miR_251) were predicted to regulate the expression of four differential expressed genes involved in the monoterpenoid and sesquiterpenoid synthesis. miRNAs families miR396, miR5185, and miR9408 were predicted to play diverse regulatory roles in monoterpenoid and sesquiterpenoid synthesis during the leaf development of C. burmannii. The results of our study shed new light on the roles of regulatory genes in terpenoid biosynthesis. Our findings also have implications for the further promotion of essential oil production using the leaves of C. burmannii.
Funder
Science and Technology Program from Forestry Administration of Guangdong Province
Guangdong Basic and Applied Basic Research Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献