Abstract
Tailings dams are constructed as storage dams for ore waste, serving as industrial waste piles and for drainage. The dam is negatively affected by rainfall, infiltration lines and its own gravity, which can cause its instability to gradually increase, leading to dam deformation. To predict the irregular changes of tailings dam deformation, empirical mode decomposition (EMD) is applied to the deformation data to obtain the trend and periodic components. The attention mechanism is used to assign different weights to the input variables to overcome the limitation that the long short-term memory (LSTM) model can only generate fixed-length vectors. The lagged autocorrelation coefficient is applied to each decomposed subregion to solve the lagging effect of external factors on dam deformation. Finally, the model is used to predict deformation in multiple directions to test the generalization ability. The proposed method can effectively mitigate the problems of gradient disappearance and gradient explosion. The applied results show that, compared with the control model EMD-LSTM, the evaluation indexes RMSE and MAE improve 23.66% and 27.90%, respectively. The method also has a high prediction accuracy in the remaining directions of the tailings dam, which has a wide practical application effect and provides a new idea for tailings dam deformation mechanism research.
Funder
Major science and technology projects of Anhui Province
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献