The Influence of Fracturing Fluid Volume on the Productivity of Coalbed Methane Wells in the Southern Qinshui Basin

Author:

Chen Wenwen,Wang Xiaoming,Tu Mingkai,Qu Fengjiao,Chao Weiwei,Chen Wei,Hou Shihui

Abstract

Hydraulic fracturing is the main technical means for the reservoir stimulation of coalbed methane (CBM) vertical wells. The design of fracturing fluid volume (FFV) is mainly through numerical simulation, and the numerical simulation method does not fully consider the water block damage caused by the leakage of fracturing fluid into the reservoir. In this work, the variance analysis method was used to analyze the production data of 1238 CBM vertical wells in the Fanzhuang block and Zhengzhuang block of the Qinshui Basin, to clarify the relationship between the FFV and the peak gas production (PGP) under the different ratios of critical desorption pressure to reservoir pressure (Rc/r), and to reveal the controlling mechanism of fracturing fluid on CBM migration. The results show that both the FFV and Rc/r have a significant impact on gas production. When Rc/r < 0.5, the PGP decreases with the increase of the FFV, and the FFV that is beneficial to gas production is 200–500 m3. When Rc/r > 0.5, the PGP increases first and then decreases with the increase of FFV. Specifically, the FFV that is favorable for gas production is 500–700 m3. Excessive FFV does not significantly increase the length of fractures due to leaks in the coal reservoir. Instead, it is more likely to invade and stay in smaller pores, causing water block damage and reducing gas production. Reservoirs with high Rc/r have larger displacement pressure, which can effectively overcome the resistance of liquid migration in pores, thereby reducing the damage of the water block. Therefore, different reservoir conditions need to match the appropriate fracturing scale. This study can provide guidance for the optimal design of hydraulic fracturing parameters for CBM wells.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3