Abstract
Lithology is one of the critical parameters influencing drilling operations and reservoir production behavior. Well completion is another important area where facies type has a crucial influence on fracture propagation. Geological formations are highly heterogeneous systems that require extensive evaluation with sophisticated approaches. Classification of facies is a critical approach to characterizing different depositional systems. Image classification is implemented as a quick and easy method to detect different facies groups. Artificial intelligence (AI) algorithms are efficiently used to categorize geological formations in a large dataset. This study involves the classification of different facies with various supervised and unsupervised learning algorithms. The dataset for training and testing was retrieved from a digital rock database published in the data brief. The study showed that supervised algorithms provided more accurate results than unsupervised algorithms. In this study, the extreme gradient boosted tree regressor was found to be the best algorithm for facies classification for the synthetic digital rocks.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献