Abstract
Prior to the implementation of digitisation processes, the handwritten signature in an attendance sheet was the preferred way to prove the presence of each student in a classroom. The method is still preferred, for example, for short courses or places where other methods are not implemented. However, human verification of handwritten signatures is a tedious process. The present work describes two methods for classifying signatures in an attendance sheet as valid or not. One method based on Optical Mark Recognition is general but determines only the presence or absence of a signature. The other method uses a multiclass convolutional neural network inspired by the AlexNet architecture and, after training with a few pieces of genuine training data, shows over 85% of precision and recall recognizing the author of the signatures. The use of data augmentation and a larger number of genuine signatures ensures higher accuracy in validating the signatures.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference38 articles.
1. Tackling the digitalization challenge: how to benefit from digitalization in practice
2. Digitalization;Brennen,2016
3. Ramping up
4. Offline handwritten signature verification—Literature review;Hafemann;Proceedings of the 7th International Conference on Image Processing Theory, Tools and Applications (IPTA),2017
5. The OpenCV Library;Bradski;Dr. Dobb’S J. Softw. Tools,2000
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献