Abstract
Understanding the immiscible displacement mechanism in porous media is vital to enhancing the hydrocarbon resources in the oil and gas reservoir. Improving resource recovery requires quantitatively characterizing the effect of wettability heterogeneity on the immiscible displacement behaviors at the pore scale, which can be used to predict the displacement distribution of multiphase fluids and evaluate the optimal wettability strategy in porous media. The heterogeneity of fluid wettability in a natural rock makes it extremely hard to directly observe the fluid displacement behaviors in the reservoir rocks and quantify the sensitivity of preferential displacement path and displacement efficiency to wettability distribution. In this study, the phase-field model coupling wettability heterogeneity was established. The gas-water two-phase displacement process was simulated under various wettability distributions and injecting flux rates in a complex pore structure. The effect of wettability heterogeneity on immiscible displacement behavior was analyzed. The results indicated that wettability heterogeneity significantly affects the fluid displacement path and invasion patterns, while the injecting flux rate negatively influences the capillary–viscous crossover flow regime. The continuous wetting patches enhanced the preferential flow and hindered displacement, whereas the dalmatian wetting patches promoted a higher displacement efficiency. The results of the fractal dimensions and specific surface area also quantitatively show the effects of wettability distribution and heterogeneity on the complexity of the two-phase fluid distribution. The research provides the theoretical foundation and analysis approach for designing an optimal wettability strategy for injecting fluid into unconventional oil and gas reservoirs.
Funder
Beijing Municipal Science & Technology Commision
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献