Abstract
Intelligent power grid fault diagnosis is of great significance for speeding up fault processing and improving fault diagnosis efficiency. However, most of the current fault diagnosis methods focus on rule diagnosis, relying on expert experience and logical rules to build a diagnosis model, and lack the ability to automatically extract fault knowledge. For switch refusal events, it is difficult to determine a refusal switch without network topology. In order to realize the non-operating switch identification without network topology, this paper proposes a power grid fault diagnosis method based on deep reinforcement learning for alarm information text. Taking the single alarm information of the non-switch refusal sample as the research object, through the self-learning ability of deep reinforcement learning, it learns the topology connection relationship and action logic relationship between equipment, protection and circuit breakers contained in the alarm information, and realizes the detection of fault events. The correct prediction of the fault removal process after the occurrence, based on this, determines the refusal switch when the switch refuses to operate during the fault removal process. The calculation example results show that the proposed method can effectively diagnose the refusal switch of the switch refusal event, which is feasible and effective.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献