Evaluation of Distributed Generation and Electric Vehicles Hosting Capacity in Islanded DC Grids Considering EV Uncertainty

Author:

Zuluaga-Ríos Carlos D.ORCID,Villa-Jaramillo Alejandro,Saldarriaga-Zuluaga Sergio D.ORCID

Abstract

Current power systems are undergoing an energy transition, where technological elements such as distributed generation and electric vehicles through AC or DC microgrids are important elements to face this transition. This paper presents a methodology for quantifying distributed resource-based generation and the number of electric vehicles that can be connected to isolated DC grids without impacting the safe operation of these networks. The methodology evaluates the maximum capacity of distributed generation considering the uncertainty present in the electric vehicle charging of fleets composed of five types of electric vehicles. Specifically, the uncertainty is associated with the following variables: the home arrival time, home departure time, traveled distance, and battery efficiency. The methodology was applied to a 21-bus DC microgrid and a 33-bus DC network under different test conditions. The results show that higher penetrations of EVs and distributed resource-based generation can be introduced while guaranteeing a secure operation of the DC networks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3