Abstract
This article analyzes and compares the integration of two different maximum power point tracking (MPPT) control methods, which are tested under partial shading and fast ramp conditions. These MPPT methods are designed by Improved Particle Swarm Optimization (IPSO) and a combination technique between a Neural Network and the Perturb and Observe method (NN-P&O). These two methods are implemented and simulated for photovoltaic systems (PV), where various system responses, such as voltage and power, are obtained. The MPPT techniques were simulated using the MATLAB/Simulink environment. A comparison of the performance of the IPSO and NN-P&O algorithms is carried out to confirm the best accomplishment of the two methods in terms of speed, accuracy, and simplicity.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献