Investigation of a Modified Wells Turbine for Wave Energy Extraction

Author:

Uddin Mohammad Nasim1,Opoku Frimpong2ORCID,Atkinson Michael3

Affiliation:

1. Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA

2. Department of Engineering, Mechanical Engineering Concentration, East Carolina University, E 5th Street, Greenville, NC 27858, USA

3. Air & Missile Defense Sector, Aerothermal Engineering Group, Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723, USA

Abstract

The Oscillating Water Column (OWC) is the most promising self-rectifying device for power generation from ocean waves; over the past decade, its importance has been rekindled. The bidirectional airflow inside the OWC drives the Wells turbine connected to a generator to harness energy. This study evaluated the aerodynamic performance of two hybrid airfoil (NACA0015 and NACA0025) blade designs with variable chord distribution along the span of a Wells turbine. The present work examines the aerodynamic impact of the variable chord turbine and compares it with one with a constant chord. Ideally, Wells rotor blades with variable chords perform better since they have an even axial velocity distribution on their leading edge. The variable chord rotor blade configurations differ from hub to tip with taper ratios (Chord at Tip/Chord at Hub) of 1.58 and 0.63. The computation is performed in ANSYS™ CFX 2023 R2 by solving three-dimensional, steady-state, incompressible Reynolds Averaged Navier–Stokes (RANS) equations coupled with a k-ω Shear Stress Transport (SST) turbulence model in a non-inertial reference frame rotating with the turbine. The accuracy of the numerical results was achieved by performing a grid independence study. A refined mesh showed good agreement with the available experimental and numerical data in terms of efficiency, torque, and pressure drop at different flow coefficients. A variable chord Wells turbine with a taper ratio of 1.58 had a peak efficiency of 59.6%, as opposed to the one with a taper ratio of 0.63, which had a peak efficiency of 58.2%; the constant chord Wells turbine only had a peak efficiency of 58.5%. Furthermore, the variable chord rotor with the higher taper ratio had a larger operating range than others. There are significant improvements in the aerodynamic performance of the modified Wells turbine, compared to the conventional Wells turbine, which makes it suitable for wave energy harvesting. The flow field investigation around the turbine blades was conducted and analyzed.

Funder

North Carolina Renewable Ocean Energy Program

Publisher

MDPI AG

Reference27 articles.

1. Renewable Energy from the Ocean;Pelc;Mar. Policy,2002

2. Effects of Blade Geometry on Performance of Wells Turbine for Wave Power Conversion;Kim;J. Therm. Sci.,2001

3. A Computational Fluid Dynamics Investigation of a Numerically Simulated Wave Tank;Uddin;Am. J. Mech. Eng.,2020

4. Wave Energy in Europe: Current Status and Perspectives;McCullen;Renew. Sustain. Energy Rev.,2002

5. A Review of Computational Methods for Studying Oscillating Water Columns—The Navier-Stokes Based Equation Approach;Opoku;Renew. Sustain. Energy Rev.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3