Assessment of Low-Carbon Flexibility in Self-Organized Virtual Power Plants Using Multi-Agent Reinforcement Learning

Author:

He Gengsheng1,Huang Yu2,Huang Guori1,Liu Xi1,Li Pei1,Zhang Yan1

Affiliation:

1. Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China

2. Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China

Abstract

Virtual power plants (VPPs) aggregate a large number of distributed energy resources (DERs) through IoT technology to provide flexibility to the grid. It is an effective means to promote the utilization of renewable energy, and enable carbon neutrality for future power systems. This paper addresses the evaluation issue of DERs‘ low-carbon benefits, proposes a flexibility assessment model for self-organized VPP to quantify the low-carbon value of DERs’ response behavior in different time periods. Firstly, we introduce the definition of zero-carbon index based on the curve simultaneous rate of renewable energy and load demand. Then, we establish a multi-level self-organized aggregation method for virtual power plants, define the basic rules of DER, and characterize its self-organized aggregation as a Markov game process. Moreover, we use QMIX to achieve a bottom-up, hierarchical construction of VPP from simple to complex. Experimental results show that when users track the zero-carbon curve, they can achieve zero carbon emissions without reducing the overall load, significantly enhancing the grid’s regulation capabilities and the consumption of renewable energy. Additionally, self-organized algorithms can optimize the combinations of DERs to improve the coordination efficiency of VPPs in complex environments.

Funder

Southern Power Grid Corporation Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3