Deep Learning Approaches for Power Prediction in Wind–Solar Tower Systems

Author:

Rushdi Mostafa A.1ORCID,Yoshida Shigeo12ORCID,Watanabe Koichi1ORCID,Ohya Yuji1ORCID,Ismaiel Amr3ORCID

Affiliation:

1. Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka 816-8580, Japan

2. Institute of Ocean Energy (IOES), Saga University, Honjo-machi, Saga 840-8502, Japan

3. Faculty of Engineering and Technology, Future University in Egypt (FUE), New Cairo 11835, Egypt

Abstract

Wind–solar towers are a relatively new method of capturing renewable energy from solar and wind power. Solar radiation is collected and heated air is forced to move through the tower. The thermal updraft propels a wind turbine to generate electricity. Furthermore, the top of the tower’s vortex generators produces a pressure differential, which intensifies the updraft. Data were gathered from a wind–solar tower system prototype developed and established at Kyushu University in Japan. Aiming to predict the power output of the system, while knowing a set of features, the data were evaluated and utilized to build a regression model. Sensitivity analysis guided the feature selection process. Several machine learning models were utilized in this study, and the most appropriate model was chosen based on prediction quality and temporal criteria. We started with a simple linear regression model but it was inaccurate. By adding some non-linearity through using polynomial regression of the second order, the accuracy increased considerably sufficiently. Moreover, deep neural networks were trained and tested to enhance the power prediction performance. These networks performed very well, having the most powerful prediction capabilities, with a coefficient of determination R2=0.99734 after hyper-parameter tuning. A 1-D convolutional neural network achieved less accuracy with R2=0.99647, but is still considered a competitive model. A reduced model was introduced trading off some accuracy (R2=0.9916) for significantly reduced data collection requirements and effort.

Funder

the Grant-in-Aids for Scientific Research

the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3