Research on the Control and Modulation Scheme for a Novel Five-Switch Current Source Inverter

Author:

Fu Tao1,Gao Jihao12,Liu Haiyan1,Xia Bo3

Affiliation:

1. College of Electronic Engineering, Zhengzhou Railway Vocational & Technical College, Zhengzhou 451460, China

2. Inverter Technologies Engineering Research Center of Beijing, North China University of Technology, Beijing 100144, China

3. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

Abstract

Different from the voltage source inverter (VSI), the current source inverter (CSI) can boost the voltage and eliminate the additional passive filter and dead time. However, the DC-side inductor current is not a real current source and is generated by a DC voltage supply and an inductor. Under different switching states, the DC-side inductor will be charged or discharged, which leads to the DC-side inductor current being discontinuous or increasing. To solve the control problem of the DC-side inductor current of the CSI, a novel single-phase CSI topology with five switching tubes for grid-connected applications is proposed. Firstly, the reference calculation method and the hysteresis loop control scheme for the DC-side inductor current are proposed, and the adjustable and constant DC-side inductor current are obtained. Since the PWM signals cannot be directly implemented to the switching tubes, the modulation strategy for the single-phase CSI is proposed in this paper. Then, an active damping method based on the feedback capacitor voltage is presented to suppress the resonance peak caused by the LC filter on the grid side. Finally, the math model of the AC-side structure is established, and the optimal proportional-resonant controller parameters’ design method is explored by the amplitude–frequency characteristic curves. The simulation and experiment are implemented for the proposed CSI topology. The results show that a high-quality power with a good control performance can be obtained with the proposed CSI topology.

Funder

Education Department of Henan Province

science and technology research project of Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3