Decarbonization of Heating and Cooling Systems of Buildings Located Nearby Surface Water Sources: Case Study

Author:

Tokar Adriana1ORCID,Muntean Daniel1,Tokar Danut1ORCID,Bisorca Daniel1ORCID

Affiliation:

1. Faculty of Civil Engineering, University Politehnica Timisoara, 300223 Timișoara, Romania

Abstract

The study was carried out to evaluate theoretically and in laboratory conditions the capacity of a hybrid heating and cooling system that sustainably uses thermal energy extracted from surface waters in order to decarbonize buildings located near water sources. The novelty of the research consists in the realization of two experimental systems, one for the rapid evaluation of the performance of the water–water heat pump heating system and one for the evaluation of the operating behavior of a cooling system with fan coil units. Starting with the heating and cooling demand, and the climatic and hydrological local characteristics, a hybrid system model for the heating and cooling of the analyzed building was established and implemented. The forecasted energy consumption and CO2 emissions for the operation of the new equipment were compared with the historical values of the old systems with which the building was equipped (thermal energy supply from the district heating and cooling system with an air conditioning unit). Also, the results were extrapolated for forecasting the energy potential of the surface waters. The study highlights a percentage reduction in annual energy consumption of 67.71% and CO2 emissions of 80.13% through the implementation of the hybrid system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3